Analysis of the availability of sustainable, biogenic gasoline in Europe

Technical potential analysis

Presenter: Niko Weimer

MASCHINENBAU

We engineer future

Authors: Friedemar Knost, Lars Knaup, Niko Weimer, Christian Beidl, Patricia Thornley, Mirjam Röder, Jalil Yesufu, Kornél Szalay, Ravi Teja Ganti, Constantin Fuchs, Ulrich Arnold, Jörg Sauer

Aston University

Agenda

Considered biomass potentials:

Countries and sources, Boundary conditions

Technical potential of biomass:

Assumptions, Results

Sustainable alcohol potentials:

Production potentials, CO₂ saving potentials

• Gasoline production:

Conversion pathways, Production potentials, CO₂ saving potentials

Consortium

We engineer future

Institute for Internal Combustion Engines and Powertrain Systems, Technical University of Darmstadt, Germany

Energy and Bioproducts Research Institute (EBRI), Aston University, Great Britain

Institute of Technology, Hungarian University of Agriculture and Life Sciences, Hungary

Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Germany

Considered potentials – boundary conditions

- Sustainable Sources compliant with RED III Annex IX
- Only domestic biomass produced in Europe
- Only second-generation biomass considered
 - \rightarrow No interference with food supply

- **Theoretical Potential**: Entire amount of biomass that is produced in given area
- **Technical Potential**: Considers amount of realistically available biomass after accounting for other established purposes (e. g. animal feed, fodder, mushroom production)
 - → Future demands not included

Considered potentials – countries and sources

Countries:

- EU27 + Iceland, Liechtenstein, Norway, Switzerland, Bosnia & Herzegovina, Montenegro, North Macedonia, Albania, Serbia, Turkey, Kosovo and UK
- Ukraine as a major agricultural contributor was not included

Biomass sources:

- Agricultural residues (straw)
- Perennial energy crops grown on marginal land
- Forestry byproducts
- Animal faeces, urine & manure
- Animal and mixed food waste, vegetal waste, organic fraction of household waste (processable waste)

Technical Potential of Biomass – Assumptions (1)

- Straw-to-grain ratio for each crop is similar for all countries
- Use as animal feed, fodder and in mushroom production considered
- Some straw is left or ploughed into the soil to maintain soil quality
- → 25 % of theoretical potential can be technically used

Source: https://www.bundesregierung.de/breg-de/mediathek/weizen-auf-einem-feld-2040206

Biomass from agricultural residues

Technical Potential of Biomass – Assumptions (2)

Energy Crops on Marginal Land:

- Marginal land (44.62 Mha) and fallow land (14 Mha) are considered in theoretical potential
- Technical potential excludes fallow land due to rest periods for soils
- Willow and poplar are the most promising energy crops common to all projects
- 60 % of land usable for willow and 90 % for poplar
- For potential estimation: 60 % of land used for willow (higher yield) and 30 % for poplar

Biomass from perennial energy crops

Technical Potential of Biomass – Assumptions (3)

Forestry By-products:

- Calculated from wood production
- 41 % of processed woods ends up as residues
- 11 % sawdust
- 30 % chips and slabs
- 4 % loss due to shrinkage and others

Source: https://wallenius-sol.com/en/enabler-magazine/impact-forest-industry

- → 37 % of wood residues available after accounting for already established bioenergy purposes
- → Technical potential: approx. 15 % of overall processed wood

Biomass from forestry by-products

Technical Potential of Biomass – Assumptions (4)

9

Animal Faeces, Urine & Manure:

- Use as organic fertilizer considered
- → Technical potential: 6.3 % of theoretical potential

Processable Waste:

We engineer future

- Considering recycling, incineration, composting and energy recovery
- → Technical potential: 8 % of theoretical potential.
- If 'landfill' waste and 'energy recovery' waste are diverted to produce alcohol, the technical potential increases to 42 %

Biomass potentials

Summary:

- Values in million tonnes dry ٠ mass/year (Mt DM/a)
- Energy crops on marginal lands ٠ account for ~50 % of the total technical potential
- Crop residues account for another ~30 %
- 325.2 Mt DM/a of biomass could \rightarrow be technically produced

■ Theoretical Potential [Mt DM/a] ■ Technical Potential [Mt DM/a]

Alcohol potentials

Typical process pathways (RED II Annex V):

- Crop residues are converted to EtOH
- Other sources are converted to MeOH
- Assumed conversion efficiency of plants from biomass to alcohol: 40 %
- → 72.0 Mt/a MeOH and 22.5 Mt/a EtOH could be technically produced (Methanol/ethanol share is adjustable)

MASCHINENBAU We engineer future

TECHNISCHE

Conversion pathways to gasoline

Processes:

- Methanol to gasoline
- Ethanol to gasoline
- Methanol to Olefins +
 Oligomerization
- Ethanol to Olefins + Oligomerization
- Results are based on process simulations

	MtG	MtO+O	EtG	EtO+O	Unit	
Inputs						
alcohol used	Meth	anol	Eth	anol		
alcohol feed rate	1000	1000	1000	1000	kg/h	
hydrogen feed rate	4.03	7.40	0.40	0.74	kg/h	
total electricity demand	260.10	458.40	78.10	155.00	kW	
Outputs						
gasoline	331.40	367.50	442.20	513.00	kg/h	
water	556.30	562.50	392.10	410.00	kg/h	
LPG	91.80	-	114.70	-	kg/h	
fuel gas	22.00	-	51.30	-	kg/h	
kerosene + diesel fuel	-	33.60	-	78.00	kg/h	
energy efficiency	67.10	72.90	72.10	80.90	%	
alcohol demand for gasoline	3.02	2.72	2.26	1.94	kg alcohol/ kg gasoline	

Overall sustainable gasoline potential

Gasoline Potential:

- Input from total technical MeOH potential (72 Mt/a) and EtOH potential (22.5 Mt/a)
- → MtO and EtO + Oligomerization pathway leads to higher sustainable gasoline output than MtG and EtG pathway

Cost assessment:

- Share of alcohol costs in overall production costs increases with plant scale
- → Significant decrease of overall production costs with upscaling of production plants

Production costs:

Alcohol feed rate [Mt/a]	0.008	1	4		
	С	ost of resulting gasoling	ne		
MtG (green methanol)	5.51 €/1	1.95 €/1	1.86 €/1		
MtO (green methanol)	5.41 €/1	1.52 €/1	1.47 €/1		
EtG (2 nd generation ethanol)	4.43 €/1	3.02 €/1	2.70 €/1		
EtO (2 nd generation ethanol)	5.08 €/1	2.58 €/1*	2.47 €/1		
* Significant decrease with future ethanol prices expected (1.52€/					

CO₂ reduction potential of sustainably produced gasoline

Values based on:

- CO₂ reduction of alcohols (typical values from RED II Annex V for crop residues, energy crops and forestry by-products)
- CO₂ reduction for animal faeces, urine & manure and processable waste is based on [1]
- Shares of gasoline from production processes
- Fossil comparator is 94 g/MJ (RED II Annex V)
- → Similar reduction potentials for the different pathways
- → Higher absolute potential for MtO+O and EtO+O processes

MASCHINENBAU We engineer future

Gasoline from Ethanol from Crop Residues

- Gasoline from Methanol from Biomass w/o Crop Residues
- Fossil Comparator

Conclusion & exemplary scenario

Sustainable potential:

- ~ 40 Mt gasoline
- → 49 % of the overall fuel consumption
- → **79 million vehicles** (667 litres per year and car)

- → Long term market demand, no interference with E-Mobility ramp up
- → Energy supply is fully based on European resources, **biomass availability** is **not a limiting factor**
- → Quicker investment decisions lead to higher GHG saving potentials
- → Flexibility of processes allows fuel production for different markets and applications → investment security

Thank You!

References

Graphic title:

https://cordis.europa.eu/article/id/442119-in-pursuit-of-decarbonised-fuels-in-the-transportsector

1) S. Puricelli *et al.*, "Life Cycle Assessment of innovative fuel blends for passenger cars with a sparkignition engine: A comparative approach," *Journal of Cleaner Production*, vol. 378, p. 134535, 2022, doi: 10.1016/j.jclepro.2022.134535.

